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EXECUTIVE SUMMARY

The addition of volatile organic compounds (VOCs) into the environment represents one stressor that
may affect metabolism among some components of the bacterial assemblage in submerged sediments.
Chronic exposure to VOCs and their rapid transport to submerged sediments may impact the structure of
the natural bacterial assemblage by increasing the selective pressure for organotolerant strains. We
developed an assay to differentiate the change in bacterial production in response to input of the VOC,
naphthalene. Bacterial production in surface water and sediments that chronically received input of fresh
petroleum or other volatile organics was less inhibited by naphthalene additions than those from more
pristine areas. The inherent difficulties involved in assessing current day input from historical
contamination in estuaries have the potential to make this a valuable tool in environmental forensics.
This assay was used to evaluate the bacterial assemblage in surface sediments of three coastal estuaries:
Charleston Harbor, San Diego Bay, and the upper Delaware River system. These three sites were chosen
because they all involve differentiating historical petroleum releases by the Navy from current industrial
inputs to estuarine sediments. Samples from most stations exhibited some decrease in production with
increase in the amount of naphthalene added to the heterotrophic production assay. At a couple of
stations, naphthalene actually stimulated bacterial production, though this only happened with two of the
64 measurements. The two stations were adjacent to known outfalls of volatile organics; Charleston
Station 4 near a paper mill outfall, and Philadelphia Station 9 near another industrial outfall. Although we
do not know the exact time scales involved from exposure to adaptation, in this survey we were able to
identify two sediment stations that consistently harbored bacterial assemblages that were organotolerant.
This report represents one line of evidence that VOCs are being released at such a rate from these two
industrial outfalls that the natural bacterial assemblage in adjacent sediments is frequently impacted.
Although microorganisms are not considered a receptor in estuarine ecosystems, this assay provides an
understanding of microbial community structure that could help assess sublethal effects in contaminated
sediments and act as an early-warning system for effects on higher organisms.
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ORGANOTOLERANCE IN THE NATURAL BACTERIAL ASSEMBLAGE
IN SURFACE SEDIMENTS OF CHARLESTON HARBOR,

SAN DIEGO BAY, AND THE UPPER DELAWARE RIVER SYSTEM

INTRODUCTION

Each gram of estuarine sediment contains approximately 109 individual bacterial cells, representing
103 to 104 cells of separate genetic groups (phylotypes) (Torsvik et al. 1990). Collectively, this is referred
to as the natural bacterial assemblage. Its composition is a result of numerous environmental factors and
stressors, such as the presence of volatile organics, which can disrupt the bacterial cell membrane and
cause cell damage or death (see review by Beney and Gervais 2001). Bacteria can compensate for the
presence of these compounds by decreasing the fluidity of their cell membrane, making it less susceptible
to disruption by organic compounds. This is known as organotolerance. While membrane fluidity can be
altered by the bacterium, sudden changes in the volatile organic concentration may cause a temporary
reduction in the metabolic rate of cells that are not adapted to elevated organic levels. Conversely, a
bacterial assemblage that is chronically exposed to volatile organics is likely to be less metabolically
affected by abrupt change in ambient organic concentration.

The component of the bacterial community that can metabolize organic compounds to bacterial
biomass and carbon dioxide is called the heterotrophic assemblage. The metabolic rate of the
heterotrophic assemblage, also called secondary or bacterial production, is commonly measured using the
leucine incorporation assay (Kirchman et al. 1985, Smith and Azam 1992, Kirchman 1993). The rate of
bacterial incorporation of a radiolabeled amino acid (3H-leucine) into cellular proteins correlates with the
assemblage growth rate as bacteria synthesize proteins when growing and dividing. The amount of amino
acid incorporated can then be converted to the bacterial biomass produced in terms of carbon metabolism
(for instance, gg C produced per gram dry weight sediment per day) (Simon and Azam 1989). In addition
to its widespread use in marine microbial ecology, bacterial production has been successfully used to
evaluate hydrocarbon biodegradation strategies in groundwater (Holm et al. 1992, Jensen 1989, Boyd et
al. 2001, Boyd et al. 2002, Montgomery et al. 2002) and wastewater inputs into groundwater (Harvey and
George 1987, Harvey et al. 1984).

The addition of volatile organic compounds (VOCs) into the environment represents one stressor that
may affect metabolism among some components of the bacterial assemblage in submerged sediments
(Godoy et al. 1998). In estuaries, these compounds are often associated with surface water release of
fresh petroleum fuels, atmospheric input, storm water runoff, and occasionally intrusion of contaminated
groundwater into the submerged sediments. Inputs to the surface water can interact with surface
sediments via resuspension, deposition of organics on particles, or through reworking of sediments by
benthic macrofauna, which increases contact with the water column. Because of the abiotic and biotic
losses of volatile organics from the system, VOC-impacted sediments might be expected to be closer to
the source of the input than those sediments impacted by less volatile polycyclic aromatic hydrocarbons
(PAH), like phenanthrene and fluoranthene. Chronic exposure to VOCs (Hayes et al. 1999) and their
rapid transport to submerged sediments may impact the structure of the natural bacterial assemblage by
increasing the selective pressure for organotolerant strains.

Manuscript approved January 15, 2003.
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One of the most commonly occurring VOCs in estuarine systems is naphthalene as it is associated
with petroleum fuels, combustion activities, and many industrial processes. Despite its ubiquity in
anthropogenically influenced systems (Kastner et al. 1994), naphthalene is transient as it is metabolized
by many types of natural bacteria and is more water soluble and volatile than many other petroleum
compounds. This two-ringed hydrocarbon can rapidly transfer out of an estuarine system into the
atmosphere (Gustafson and Dickhut 1997), so it is more likely to reflect a current petroleum source than a
more weathered product input (Arzayus et al. 2001). Naphthalene has been reported to decrease bacterial
diversity (Nyman 1999) and inhibit bacterial metabolism, even among strains that metabolize higher
molecular weight PAH (Bouchez et al. 1995, Lantz et al. 1997). When coupled with the leucine
incorporation assay, this inhibition may allow for the identification of sediments that are chronically
subjected to inputs of volatile organics.

We developed an assay to differentiate the change in bacterial production in response to input of the
VOC, naphthalene. It is expected that bacterial production in surface water and sediments that
chronically receive input of fresh petroleum or other volatile organics will be less inhibited by
naphthalene additions than those from more pristine areas. The inherent difficulties involved in assessing
current day input from historical contamination in estuaries have the potential to make this a valuable tool
in environmental forensics. This naphthalene inhibition assay was used to evaluate the bacterial
assemblage in surface sediments of three coastal estuaries: Charleston Harbor, San Diego Bay, and the
upper Delaware River system. These three sites were chosen because they all involve differentiating
historical petroleum releases by the Navy from current industrial inputs to estuarine sediments. This is
one part of a comprehensive evaluation by NRL of PAH biodegradation and transport in coastal
ecosystems.

METHODS AND MATERIAL

Study Site and Collection Methods

Charleston Harbor

This survey involved seasonal sampling of 22 stations through the Charleston Harbor and the three
major rivers that are part of the watershed: the Ashley, the Wando, and the Cooper (Fig. 1). This study
site includes the former Charleston Navy Yard (CNY), which is situated along the Cooper River about
one mile upriver from the Charleston Harbor. Ten of the stations were within the area adjacent to the
former CNY on the Cooper River (Stations 6A, 6B, 6C, 6D, 6E, 9, and 13) and Shipyard Creek (Stations
10, 11, and 13). Two stations (16 and 17) were near the mouth of the Ashley River. Two stations (A2
and A3) were in the Wando River. Three stations (14, 15, and Al) were in the Charleston Harbor.
Sample size was dependent on the type of sample analysis to be conducted. Water samples were
collected using a standard shipboard CTD rosette that held three 10-L Niskin collection bottles. Surface
water was collected 1 m below the estuary surface. Bottom water was collected from 1 m above the
sediment-water interface. Water samples were taken in acid-cleaned 500 mL amber glass bottles with
Teflon®-lined closures. Water samples used for biological analysis were transferred to onboard
laboratory facilities for processing within minutes of collection. Surface sediment (top 10 in.) was
collected using a Shipek benthic grab. Sediment samples for PAH and biological analyses were
transferred to 50 mL centrifuge tubes and immediately subsampled for mineralization and production
assays.

2) Unanom Psmvd 7"d.9mifh
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iariesion Harbor sampling stations

San Diego Bay

Surface sediments were sampled in the San Diego Bay aboard the RV Ecos using a Petite Ponar
benthic grab. Samples were collected from six stations (TS01, TS02, TS03, PCO7, PCO8, and PC08)
within Paleta Creek, which is near Naval Station San Diego (Table 1). In addition, two stations were
collected from outside this study site near Shelter Island (SDB) and Coronado Cayes (Pristine). Surface
water samples were collected with a 2.5 L Nansen-type bottle.

Table 1 - GPS Coordinates for the November 1999 Sampling of
Surface Sediments in San Diego Bay around Paleta Creek, Shelter

Island, and Coronado Cayes

Location Station Code Longitude Latitude
Shelter Island SDB 117.2276000 32.7160500

Coronado Cayes Pristine 117.1360833 32.6378000
Paleta Creek TSO1 117.1160056 32.6741583
Paleta Creek TS02 117.1159105 32.6736903
Paleta Creek TS03 117.1159013 32.6732012
Paleta Creek PCO7 117.1174583 32.6721536
Paleta Creek PCO8 117.1177001 32.6724453
Paleta Creek PC09 117.1179399 32.6727709

-I---------,--- --- 'A
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Upper Delaware River System

This study was conducted in a tidally influenced freshwater region of the Delaware River near
Philadelphia, Pennsylvania (USA) (Fig. 2, from Boyd et al. 1999). A series of stations was established in
the industrialized region of the Delaware and Schuylkill Rivers, where environmental impacts have been
well documented (Weisberg and Burton 1993, Maxted et al. 1997, Steyermark et al. 1999). Samples were
also taken within the Philadelphia Naval Complex Reserve Basin (RB; Fig. 3, from Boyd et al. 1999)
during research cruises in December 1998 and May 1999. Sediment samples were collected using a
Petite Ponar within the RB from an Avon inflatable and with a Smith-Mack grab from the R/V Cape
Henlopen in the Delaware and Schuylkill Rivers. Water samples were collected with a 2.5 L Nansen-type
bottle in the RB and a 30 L Niskin bottle in the Delaware and Schuylkill Rivers.

Fig. 2 -Delaware and SchuyLkill sampling stations

Bacterial Production Assay

A 50-jiL sample of wet sediment was subsampled from each station and added to 2.0-mL centrifuge
tubes (three experimental and one killed control) that were precharged with [3H-4,5]-L-leucine (154 mCi
mmol-1, final concn. 20 nM) and killed with 57 mL of 100% trichloroacetic acid (Sigma). The sediment
was extracted from the benthic grab sample and added to the 2.0 mL tube using a 1 mL polypropylene
syringe with the end cut off. One mL of 0.22 Jim (nom. pore dia.) filtered bottom water (collected less
than 1 m above bottom) was then added to each tube to form a sediment slurry. Samples were incubated
for 1 to 2 hours at in situ temperatures and subsequently processed by the method of Smith and Azam
(1992). A constant isotope dilution factor of 2.0 was used for all samples. This was estimated from
actual measurements of sediment dissolved free amino acids (Burdige and Martens 1990) and saturation
experiment estimates (Tuominen 1995). Triplicate -mL syringed samples of wet sediment were dried at
50 C and used to convert production values to dry weight. Leucine incorporation rate was converted to
bacterial carbon using factors determined by Simon and Azam (1989).

A lfManom Psmvd lnd.mith
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Fig. 3 -Philadelphia Reserve Basin sampling stations

Naphthalene Inhibition Assay

Organotolerance of the natural bacterial assemblage to naphthalene was measured by addition of 0, 5,
15 or 25 jig of naphthalene dissolved in 5 jiL of methanol to 0.50 jiL of wet sediment samples with
subsequent processing for production (Montgomery et al. 1999). All treatments and controls received the
same addition of methanol (5 jiL) though preliminary experiments with parallel incubations with no
methanol added showed that production was not statistically affected. Controls in the results presented
have methanol added to the incubations.

Statistics

Average values for production were used in regressions with the amount of naphthalene added to the
leucine incorporation assay. The formula and the r2 value were calculated using Excel.

RESULTS

At 58 sediment stations and 8 water column stations, the effect of naphthalene additions was
measured on heterotrophic bacterial production (Table 2). The leucine incorporation method was used to
measure bacterial production of a natural assemblage from the rate of incorporation of 3H-leucine
incorporated into bacterial proteins. The measure is an average for the assemblage and as such is
insensitive to competing affects such as stimulation of one component of the assemblage simultaneous
with the inhibition of another component of the assemblage. An increase in one component can offset the
decrease in productivity of another and be measured as "no effect." Heterotrophic bacterial assemblages
are likely to respond in one of three ways to the addition of naphthalene:

1. decrease rates of production as the cell membrane of organosensitive cells is disrupted and the
cells are damaged or lysed;

i" tho AT/ihiral Rlwhorilyl AmomhIlyow 1s



2. maintain rates of production as organotolerant cells are unaffected by the presence of
naphthalene; or

3. increase rates of production and organotolerant cells that can metabolize naphthalene in response
to the addition of this relatively labile carbon source.

Table 2- Summary of All Water and Sediment Samples Assayed for Naphthalene Inhibition

Bottom
Date | Sediment Surface Water Water

Charleston (39 total)

Aug-98 1, 2, 3, 4, 10, 12, A2 1, 2, 3, 4, 6A, 6E 6B, 6E

Dec-98 1, 2, 3, 4, 5, 6E, 17, A2

Apr-99 1, 4, 5, 6A, 12, 17, Al, A2

Jun-99 1, 4, 5, 6C, 12, 17, A2, 20

San Diego Bay (8 total)

Nov-99 TSO1, TS02, TS03, Pristine, PCO7, PCO8, PCO9, SDB

Upper Delawar River (11 total)

Dec-98 3, 9, 10

May-99 RB04, RB08, RB 10, 3, 6, 10, 12, 16

Charleston Harbor

Water and surface sediments were collected from the Charleston Harbor Estuary over four research
cruises in August and December 1999 and April and June 2000. At least seven stations were sampled
during each cruise and an additional eight stations were sampled for surface or bottom water in August
1999. In addition to historical input from Naval operations at the former Charleston Navy Yard, possible
sources of VOCs to the surface sediments in the study are numerous industries along the river and harbor
waterways including a petroleum storage facility and paper mill, as well as storm water and surface runoff
(Van Dolah et al. 1990).

Linear regression of the station averages described the effect of naphthalene on inhibiting bacterial
production (r2 > 0.8) with four surface water samples (August Stations 1, 2, 4, 6A; Figs. 4 through 7) and
two from bottom water (August Stations 6B, 6E; Figs. 8 and 9), but did not describe the effect in surface
water at August Stations 3 or 6E (r2 < 0.8; Figs. 10 and 11). In these latter two samples, no effect was
observed (r2 = 0.152 and 0.324, respectively). Surface water at Station 3 was collected 2 h after high tide
so it was possible that it was influenced by the outfall effluent from Station 4 moving upriver with the
tide. Tidal influence and the high salinity stratification between surface and bottom water in this section
of the Cooper River (Van Dolah et al. 1990) complicate interpretation of these findings.

A Mnanom Psmvd 7"d.9mifh
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Fig. 4 -Inhibition of bacterial production (jig L-1 d-1) by addition of naphthalene (jig) in the surface water of the
Cooper River station 01 during August 1998
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Fig. 5- Inhibition of bacterial production (jig L-l d-) by addition of naphthalene (jig) in the surface water of the
Cooper River station 02 during August 1998
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Naphthalene addition (rig)

Fig. 6 -Inhibition of bacterial production (g L-1 d-1) by addition of naphthalene (g) in the surface water of the
Cooper River station 04 during August 1998
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Fig. 7- Inhibition of bacterial production (g L-1 d-1) by addition of naphthalene (g) in the surface water of the
Cooper River station 6A during August 1998
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Fig. 8- Inhibition of bacterial production (pg L-1 d-1) by addition of naphthalene (jig) in the surface water of the
Cooper River station 6B during August 1998
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Linear regressions described the inhibitory effect of naphthalene on bacterial production in surface
sediments in 15 out of the 34 samples taken during the four cruises (r2 > 0.8). Production was linearly
inhibited on more than one sampling, for three stations outside of the Cooper River, including the Wando
River station A2 (August, December, April; Figs. 12 through 14), the Ashley River Bridge station 17 by
the municipal marina (December, April, June; Figs. 15 through 17), and at station 12 near the mouth of
Shipyard Creek (August, April, June; Figs. 18 through 20). Sediments from station 10 nearest the
headwaters in Shipyard Creek were inhibited during one cruise (August; Fig. 21). Three stations in the
Cooper, upriver of the Charleston Navy Yard were inhibited by naphthalene at least once, including
stations 1 (April; Fig. 22), 2 (August; Fig. 23), and 5 (December; Fig. 24). Several stations in the Cooper,
upriver of the CNY, were unaffected by increasing amounts of naphthalene including stations 2
(December; Fig. 25), 4 (April; Fig. 26) and 5 (April; Fig. 27) with one station nearest the paper mill
showing some stimulation by the naphthalene (station 4, August, r = 0.638; Fig. 28).

A third type of effect was observed with the addition of naphthalene to surface sediment samples. In
nine of the observations, low concentrations of naphthalene (5 jig) inhibited production relative to the
control but higher concentrations did not show more inhibition than the control. As a result, the linear
regression did not accurately describe the relationship between naphthalene addition and reduced
production (r2 < 0.8), but these samples did show a decrease in production relative to the control. Many
of these samples were from the Cooper River, including Stations 1 (August, December, June; Figs. 29
through 31), 3 (December; Fig. 32), 4, and 5 (both June; Figs. 33 and 34). One station was from the
Ashley River, 20 (June; Fig. 35), one from Charleston Harbor, Al (April; Fig. 36) and two were from the
Cooper adjacent to the CNY, 6A (April; Fig. 37) and 6C (June; Fig. 38).

The remaining four samples were not described by the regression and high discrepancy between
sample replicates within a treatment made it difficult to determine whether there was a complex
relationship with naphthalene addition, problem with the assay, or sediment sample heterogeneity higher
than those from the rest of the survey. These samples were from the Wando River station A2 (June; Fig.
39), the CNY station 6E (December; Fig. 40), near the paper mill Station 4 (December; Fig. 41) and
upriver in the Cooper Station 3 (August; Fig. 42). The latter two stations showed inhibition of production
at low naphthalene additions but much less inhibition at higher additions. It is possible that low
naphthalene concentrations inhibited production by a component of the assemblage but were not enough
to stimulate production by the naphthalene-metabolizing assemblage. At higher naphthalene
concentrations, production by the naphthalene-metabolizing assemblage countered reductions in the
organosensitive assemblage.

San Diego Bay

In November 1999, the surface sediment at eight stations in San Diego Bay were sampled including
Poleta Creek (TS01, TS02, TS03, PC07, PC08, PC09), and two stations away from the creek at Shelter
Island (SDB) and Coronado Cayes (Pristine). Possible sources of VOCs to the surface sediments include
storm water and surface water runoff into Poleta Creek, intrusion of contaminated groundwater, and Navy
ship activity (Katz 1998). Linear regressions described the inhibitory effect of naphthalene on production
at five of the eight stations (R2 > 0.85) including stations Pristine, TS01, TS02, TS03, and PC07 (Figs. 43
through 47). Naphthalene inhibition was demonstrated at the remaining three stations (PC08, PC09, and
SDB; Figs. 48 through 50), but the effect was not linear with a decrease in production with the 5-jig
addition and little further inhibition at higher concentrations. In addition, production of the unamended
control was much lower at PC09 (13 jig C g-1 d) than at the other stations (range: 43 to 126 jig C g-1 d).
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Fig. 12- Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (g) in the sediment of
the Wando River station A2 during August 1998
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Fig. 13 - Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (pg) in the sediment
of the Wando River station A2 during December 1998
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Fig. 20-Inhibition of bacterial production (pg C kg-d-') by addition of naphthalene (pg) in the sediment of Shipyard
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Shipyard Creek station 10 during August 1998
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Fig. 22 Inhibition of bacterial production (pg C kg-' d-') by addition of naphthalene (pg) in the sediment of
the Cooper River station 01 during April 1999
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Fig. 24- Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (g) in the sediment of

the Cooper River station 05 during December 1998
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Fig. 25- Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (pg) in the sediment of
the Cooper River station 02 during December 1998
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Fig. 28- Inhibition of bacterial production (gg C kg-' d-') by addition of naphthalene (g) in the sediment
of the Cooper River station 04 during August 1998
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Fig. 29- Inhibition of bacterial production (g C kg-' d-') by addition of naphthalene (g) in the sediment of the
Cooper River station 01 during August 1998
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Fig. 30 -Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (g) in the sediment of the
Cooper River station 01 during December 1998
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Fig. 32- Inhibition of bacterial production (gg C kg-'d-') by addition of naphthalene (g.) in the sediment of the
Cooper River station 03 during December 1998
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Fig. 34- Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (pg) in the sediment of the
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Fig. 36 -Inhibition of bacterial production (gg C kg-'d-') by addition of naphthalene (g) in the sediment of the
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Fig. 38 -Inhibition of bacterial production (pg C kg-' d-') by addition of naphthalene (pg) in the sediment of
the Cooper River station 6C during June 1999

40

Wando River Station A2

35 ' _ T June 1999 Charleston

30

Oe 25

20

S 15

S 10

y= -0.2146x + 33.262

R2 = 0.4946

0

0 5 10 15 20 25

Naphthalene addition (g)
Fig. 39-Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (pg) in the sediment of

the Wando River station A2 during June 1999

Cooper River (CNY) Station 6C
June 1999 Charleston

y = -12.923x + 803.6

R2 = 0.6238

i" tho AT/ihiral Rlwhorilyl AmomhIlyow 25 1

I
I
i

A

e

.i

AI



10 20

Mantonmor Rmmid and. mith

5 15 25 30

Naphthalene addition (pg)

Fig. 40 -Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (g) in the sediment of
the Cooper River station 6E during December 1998
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Fig. 41 -Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (pg) in the sediment of
the Cooper River station 04 during December 1998
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Fig. 42- Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (g) in the sediment
of the Cooper River station 03 during August 1998
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Fig. 44- Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (pg) in the sediment of

the San Diego station TSO1 during November 1999

0

.)

2
Cd

to
Cd

m~

100

901

80

70

60

50

40

30

20

10

0

0 5 10 15 20 25

Naphthalene addition (pg)

Fig. 45- Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (pg) in the sediment of
the San Diego station TS02 during November 1999

Mantonmor Rd and Smith2S 



Organotolerance in the Natural Bacterial Assemblage

90 

80

i 70

to

U 60

c 50
0

0

m30

,20
m

10

0

Fig. 4

140

120

100

e 80
r,0
.)
-X 60
10

C.)I r 40
c 0

20

0

) 5 10 15 20 25

Naphthalene addition (pg)
6- Inhibition of bacterial production (g C kg-'d-') by addition of naphthalene (pg) in the sediment

of the San Diego station TS03 during November 1999

0 5 10 15 20 25

Naphthalene addition (gg)
Fig. 47 -Ihibition of bacterial production (g C kg-'d-') by addition of naphthalene (g) in the sediment of

the San Diego station PCO7 during November 1999
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Fig. 48- Inhibition of bacterial production (pg C kg-'d-') by addition of naphthalene (pg) in the sediment

of the San Diego station PCO8 during November 1999
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Fig. 50 -Inhibition of bacterial production (gg C kg-'d-') by addition of naphthalene (pg.) in the sediment of the
San Diego station SDB during November 1999

Upper Delaware River System

During two research cruises in December 1998 and May 1999, the surface sediments were sampled in
the Philadelphia Navy Yard Reserve Basin (RB04, -08, -10), and in the adjacent Schuylkill River (3, 6)
and the Delaware River (9, 10, 12, 16). Possible sources of volatile organics to the surface sediments
include historic petroleum inputs from ship activity in the Reserve Basin, effluent from petroleum
refineries along the Schuylkill River (Pohlman et al. 2002), and an industrial outfall near Station 9 in the
Delaware River.

Linear regressions described the inhibitory effect of naphthalene on bacterial production (r > 0.83) at
three stations including samplings at the Reserve Basin station RB04 (May: Fig. 51), one Schuylkill
station 3 (December; Fig. 52) and one Delaware River station 12 (May; Fig. 53). Naphthalene additions
actually stimulated production (r2 = 0.809) in the sediment nearest the industrial outfall in the Delaware
River at station 9 (December; Fig. 54). Naphthalene addition appeared to have little effect on production
at three samplings: Schuylkill station 3 (May; Fig. 55), Delaware River station 10 (December; Fig. 56)
and Reserve Basin station RB10 (May; Fig. 57). Finally, naphthalene appeared to inhibit production but
the effect was poorly described by the linear regression (r2 = 0.551 to 0.651) in May samples from the
Reserve Basin station RB08 (Fig. 58), the Schuylkill station 6 (Fig. 59), and the Delaware River stations
10 and 16 (Figs. 60 and 61).
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Fig. 51 -Inhibition of bacterial production (pg C kg-' d-') by addition of naphthalene (g) in the

sediment of the Philadelphia Reserve Basin station 04 during May 1999
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Fig. 52- Inhibition of bacterial production (g C kg-' d-') by addition of naphthalene (g) in the
sediment of the Delaware River station 03 during December 1998

450

400

350

300

250

200

150

100

50

to

=I-

0
0
0

cdm r

0

9'U U

800'

fQ

0c

0

0I

Station 3 -- December 98 PNY

0

21

Anna



flranntnlolrnne in tho Aatural Rlntorinl Am.vomhIlao

400

-z

2
U

td0

-0

0 5 10 15 20 25 3

Naphthalene addition (.g)

Fig. 53- Inhibition of bacterial production (g C kg-' d-') by addition of naphthalene (pg) in the
sediment of the Delaware River station 12 during May 1999
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Fig. 55- Inhibition of bacterial production (g C kg-' d-') by addition of naphthalene (g) in the
sediment of the Schuylkill River station 03 during May 1999
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Fig. 57- Inhibition of bacterial production (pg C kg-' d-') by addition of naphthalene (pg) in the
sediment of the Philadelphia Reserve Basin station 10 during May 1999
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Fig. 58-Inhibition of bacterial production (g C kg-' d-') by addition of naphthalene (gg) in
the sediment of the Philadelphia Reserve Basin station 08 during May 1999
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Fig. 59 -Inhibition of bacterial production (pg C kg-' d-') by addition of naphthalene (pg) in the sediment of
the Schuylkill River station 06 during May 1999
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Fig. 61 -Inhibition of bacterial production (g C kg-' d-') by addition of naphthalene (g.) in the sediment
of the Delaware River station 16 during May 1999

In most samples from these three ecosystems, leucine incorporation rate was reduced by the addition
of naphthalene to the assay, as would be expected if most bacterial assemblages were not adapted for
chronic exposure to volatile organics. Naphthalene can inhibit bacterial metabolism even if the
assemblage has been exposed to low concentrations (10 jug L-1) for a relatively long time (30 days) (see
review by Capone and Bauer 1992, Bauer and Capone 1985). In stations from two sites nearest to known
industrial outfalls, Delaware River station 9 and Cooper River station 4, naphthalene addition actually
increased the rate of bacterial production in the surface sediment.

DISCUSSION

Bacterial production was measured in the sediments and surface waters of the watersheds adjacent to
three Navy properties in Charleston, Philadelphia, and San Diego. Replicate samples were treated with
naphthalene as a measure of the organotolerance of the natural bacterial assemblage. Samples from most
stations exhibited some decrease in production with increase in the amount of naphthalene added to the
heterotrophic production assay. At a couple of stations, naphthalene stimulated bacterial production,
though this only happened with two of the 64 measurements. The two stations were adjacent to known

- -___..._.__ 17



Uantonmor Rmmid and. mith

outfalls of volatile organics: Charleston station 4 near a paper mill outfall, and Philadelphia station 9 near
another industrial outfall.

While several stations were always inhibited by naphthalene, there was variability between sampling
times. This suggests the importance of multiple samplings to address both seasonal variations in the
microbial assemblage, as well as the episodic nature of toxic releases from industrial operations. Many
stations near the two cited outfalls had complex responses. For instance, stations upriver of the CNY in
the Cooper River were often inhibited to some extent by low naphthalene additions (5 jig) but had little
additional reduction at higher naphthalene additions (15 and 25 Fg). One explanation is that a relatively
high proportion of the bacterial assemblage is organotolerant, or more precisely, a large proportion of the
cells contributing to heterotrophic production is organotolerant. The low concentration of naphthalene
may have inhibited the relatively small proportion of organosensitive strains. Hudak et al. (1988) found
that both naphthalene and phenanthrene acutely inhibited bacterial production (using thymidine
incorporation) but stimulated production in longer-term exposures (more than 12 h). It is possible that the
proportion of organosensitive strains correlates with the length of time since the last exposure to high
VOC concentrations but this was not measured in this study. The likely source of elevated VOC input to
this area of the Cooper River is the paper mill, which has an outfall at Station 4 permitted to discharge 20
million gallons per day of organic rich effluent (Van Dolah et al. 1990). Van Dolah et al. (1990) report
that "this is the largest source of organic wastewater in the Cooper River and could dominate organic
matter concentrations in the areas adjacent to the discharge. However, the effect was only apparent in the
bottom waters over an 8 tolO RK distance downstream from the paper mill." As point of reference, the
CNY sediments are located 2 to 9 km downstream of the paper mill.

Although we used naphthalene to represent exposure to other VOCs, the response of the assemblage
might be similar if other organics were used in the assay. The general cellular response to VOCs, which
is to alter the cell membrane structure, would not be expected to be specific to naphthalene addition but
rather exposure to any high VOC concentration (Beney and Gervais 2001). There are other
environmental stresses, such as high temperature or salinity change, which could promote a similar
alteration in cell membrane structure that would confer organotolerance without prior exposure to VOCs.
We compared temperature and salinity across sampling stations and could find no evidence that changes
in assemblage response were the result of such environmental variation (data not shown). In general, the
water temperature across a site differed between sampling events but was very similar between all
stations for a given survey. The salinity at both San Diego and Philadelphia was also very similar across
each respective site, with San Diego being marine water and Philadelphia being freshwater. Salinity
between Charleston stations was different but there were no trends when salinity was compared with
response to naphthalene (data not shown).

The response of bacteria to increase their organotolerance involves specific and well-documented
changes to the cell membranes and can involve both short- and long-term responses. The short-term
responses are primarily to maintain the cell's viability when exposed to an abrupt change in
environmental condition. These responses include cis to trans isomerization of unsaturated fatty acids in
the bacterial membrane (Loffeld and Keweloh 1996). This conversion results from the direct
isomerization of the double bonds in the cis fatty acid and increases the membrane viscosity, which
prevents solvent penetration (Morita et al. 1993). In addition to this rapid response, a long-term response
to the presence of volatile organics involves changes in composition of the polar head groups in the
bacterial membranes (Beney and Gervais 2001). The phosphatidylethanolamine concentration in the cell
membrane decreases resulting in increased phospholipids cohesion, which affords the strain an additional
protection from high nonpolar solvent concentrations (Beney and Gervais 2001). Because of the high
correlation between membrane fluidity and cell resistance to stress, fluidity values have been used as
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measure of organotolerance (Beney and Gervais 2001, Beney et al. 2001, Giraud et al. 2000, Swan and
Watson 1997).

Once the immediate threat of cell damage or lysis has been overcome, bacterial strains that can
catabolize the volatile organic or associated carbon sources will be selected for over noncatabolizing
components of the assemblage. Strains amongst the organotolerant assemblage that cannot degrade
compounds like naphthalene can acquire the necessary cellular machinery from other strains through
horizontal gene transfer. There is growing evidence that transfer of naphthalene catabolic genes on
plasmids is an important means of natural selection and community adaptation in hydrocarbon-
contaminated sites (Stuart-Keil et al. 1998). In fact, the presence of contaminants like coal-tar may play a
role in increasing the rate of gene transfer in nature by increasing the amount of cell-to-cell contact
amongst proliferating members of the assemblage (Ghiorse et al. 1995, Stuart-Keil et al. 1998).

Once the assemblage is exposed to high concentrations of naphthalene, organotolerant strains that can
catabolize naphthalene can rapidly increase in abundance. Dramatic change in community structure took
place using samples from the bottom boundary layer (nepheloid) collected from Philadelphia Station 9
(industrial outfall), where sediment production was stimulated by naphthalene. Within 72 h of exposure to
naphthalene, the most abundant strains (based on DGGE genetic analyses) were known naphthalene
degrading strains (Castle et al. 2003). The time scales for recovery of the assemblage back to
organosensitive strains is more poorly understood but may be based on protist grazing rate on bacteria,
selective pressure from other extreme environmental conditions like high organic matter concentrations or
nutrient competition (Morrison and Alexander 1997).

Submerged sediments in estuarine ecosystems can be periodically exposed to VOCs through a variety
of common mechanisms including release from industrial outfalls. Bacteria amongst the assemblage can
be either damaged or can alter the fatty acid composition in their cell membrane to become
organotolerant. Adapted members of the microbial community that can catabolize VOCs may be
responsible for much of the metabolic activity of the assemblage. Further exposure to VOCs, such as
naphthalene, would be expected to have little negative impact on the rate of metabolic activity of the
adapted assemblage. Although we do not know the exact time scales involved from exposure to
adaptation, in this survey, we were able to identify two sediment stations that consistently harbored
bacterial assemblages that were organotolerant. This report represents one line of evidence that VOCs are
being released at such a rate from these two industrial outfalls that the natural bacterial assemblage in
adjacent sediments is frequently impacted.

Although microorganisms are not considered a receptor in estuarine ecosystems, this assay provides
an understanding of microbial community structure that could help assess sublethal effects in
contaminated sediments and act as an early-warning system for effects on higher organisms (Eismann and
Montuelle 1999). Some researchers have gone so far as to suggest that microbial ecotoxicity be
incorporated into Environmental Risk Assessments (Babich and Stotzky 1985). In any event, such
information should raise awareness that these areas may be a risk to the health of higher organisms and
may impact adjacent ecosystems. Additional data on contaminant transport and biodegradation are
currently being collected to help understand the consequences of these inputs to the adjacent watershed or
downriver sediments.
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